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INTRODUCTION 

In a recent paper, Engelman et al.' have reviewed various techniques for implementing 
specified normal flow boundary conditions in finite element codes. One of the biggest 
problems in specifying this type of boundary condition is that, at a node, the normal 
direction along the boundary of the finite element grid may not be unique. Engelman et al. 
confirm the two-dimensional derivation of Gray2 which selects an average normal at such 
nodes using a mass conservation criteria and extend that work to three dimensions. 

In two-dimensional shallow water problems, a typical boundary condition is the specifica- 
tion of the normal velocity or flux. For example at a land boundary, the normal flow is zero 
but the flow is allowed to slip tangentially along the boundary. If node j is such a boundary 
node, this boundary condition is implemented in the momentum equations by rotating the 
x - y  equations weighted with respect to the basis function at node j into tangential and 
normal equations, dropping the normal equation in favour of the boundary condition, and 
solving the tangential e q ~ a t i o n . ~  In such simulations, difficulties discussed by Engelman et al. 
may arise in selection of the normal direction. These difficulties arise, in part, because the 
vertically integrated mass conservation equation is more complex than the conservation 
equation for an incompressible fluid. It is our purpose here to examine instances when 
additional considerations are required for selection and application of the normal direction 
conditions. 

COMPUTATION OF THE NORMAL DIRECTION 

For tidal simulations performed using quadratic basis functions, King4 has proposed a 
method which ensures that the boundary of a finite element grid will be smooth and thus 
have a unique normal direction at every point. However, if linear elements are used or if one 
does not wish to perform the calculations required to guarantee smoothness, the normal 
direction at a corner node will not necessarily be unique. In these instances it is necessary to 
calculate an appropriate normal direction for use in computations. The appropriate direction 
does not depend only on the grid being used but also on the way the dependent variables are 
approximated. 

Tidal or shallow-water simulations are concerned with obtaining solutions for the total 
depth, H, and for the vertically averaged x- and y-components of velocity, denoted U and 
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V, respectively. Sometimes these problems are formulated in terms of the surface elevation, 
5, which is equal to H -  h where h is the bathymetry or distance from mean sea level to the 
bottom of the water body. Also the water fluxes, Qx = UH and Q,, = VH, are sometimes 
solved for instead of the velocities. This last choice of dependent variables does have some 
bearing on the normal direction computation. 

Case I :  normal direction for ax and Qy as dependent uariabEes 

If the water flux Q is expanded in terms of basis functions such that 
N 

Q =  1 Q i 4  
i = l  

where + i ( x ,  y )  are the basis functions and Qi is the estimate of Q at node i ,  then for the 
region R under consideration, the net outward flux F is defined by 

Of course because +i is zero on afl unless node i is a boundary node, the flux can be 
computed by summing only over the NB boundary nodes. We may now apply the divergence 
theorem to (2) and obtain 

If the desired but unknown nodal components of the effective normal at node i are defined 
such that 

where n, and ny, are the x -  and y-components of n at node i and Q, and 0, are the normal 
and tangential components of Q at node i, then substitution of (4) into (3) yields 

The net outward flux F should be independent of the tangential fluxes for all possible 
combinations of Q,. Therefore the coefficient of Q, in ( 5 )  must be zero for all i or 

Then, because n:, + n:, = 1, we obtain 

where 
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These results are the same as those of Gray’ and Engelman et al.’ and the derivation is 
virtually identical to that of Engelman et al. 

Case 11: normal direction for U and V as independent variables 

basis functions such that 
If instead of expanding the water flux Q, we expanded the water velocity v in terms of the 

N 

i = l  

then the net outward flux F is defined by noting that Q=Hv such that (2) becomes 
NB 

Hv . n* d S  = dS  + Vi Ian Hq$n; dS] 
i = l  

Here we have replaced N by NB, the set of boundary node numbers as discussed previously. 
For the present we will say nothing of how H is represented in space. Application of the 
divergence theorem to (10) yields 

If equations (4) are now invoked and we let Ui = QJH, and Vi = QJHi then equation (11) 
becomes 

(12) 
Again the net outward flux F should be independent of the tangential fluxes, so the 
coefficient of each 0, must be zero or 

By requiring the magnitude of the normal to be unity we obtain 

where 

These results agree with those in (7) and (8) only for the special case of H independent of 
space. In most practical problems, H is a function of time as well as space and therefore the 
normal components would vary with time and would have to be recomputed at each time 
step. If most of the spatial variation of H is due to bathymetry rather than surface elevation, 
a time invariant estimation for nT, and n f ,  may be obtained by substituting h for H in (14) 
and (15). For purposes of computational efficiency, it may be useful to note that if H is 
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known through an expansion in terms of 4i, one only need consider the terms in the 
expansion which involve the boundary nodes. Thus if 

N 

H= 1 H& 
j = l  

then (14) and (15) become 

and 

Although the computation of n:, and n f i  requires more work in case I1 than the 
computation of nXi and n,, in case I, both derivations are straightforward and the actual 
calculations can be easily made in a computer code. The components of n (or n") obtained 
may be used to rotate the momentum equations into normal and tangential co-ordinates and 
apply the normal velocity boundary condition. After solution of the tangential momentum 
equations, the velocities may be rotated back into x-y co-ordinates, again using the 
components of the normal. The solution of the momentum equation is thus accomplished by 
knowing the appropriate unit normal vector, regardless of whether case I or case I1 is 
considered. 

EXAMPLE CALCULATION 

Assume that we are performing calculations on a linear finite element grid. On the 
boundary of the grid are three nodes labelled A, B, and C in counterclockwise order where 
the depths are HA, HB and H,, respectively (Figure 1). The length of the element side 
joining B and C is a, and of the side joining A and B is c. Nodes A and C are separated by a 
distance b. We can use equations (17) and (18) to get the case I1 values of n;B and n:, and 
note that when HA = HB = H,, the solutions will become identical to those for case I. The 
algebra involved is somewhat lengthy but it is easy to show that 

where 
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Figure 1. Boundary section of a linear finite element grid 

The components of n for the case I situation can be obtained from (19) and (20) by setting a 
equal to unity. To obtain the change in normal direction between the case I and case I1 
formulation we dot n with n* such that 

n 

2 p -  \" I 

(a4-ar2> I-'- 
--, J 

where 8 is the angle between n and n*. When Hc = HA, a will equal 1, cos 8 will also be 
unity and n will be equal to n*. When Hc is not equal to HA, a will differ from unity, and 
equation (22),  along with the finite element geometry, may be used to investigate the change 
in normal direction induced by flow depth effects in the case I1 analysis. 

CONCLUSION 

This paper has shown that in surface water modelling the method for selecting the 
appropriate normal direction at a finite element boundary node depends upon the grid, and 
also on whether the basis function expansion is performed on velocity or flux. It has been 
shown that when the expansion is in terms of velocity, the appropriate normal direction at a 
node may vary in time. However for most applications, this variation is expected to be small. 
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